Exercise 4.3
1.Find the roots of the following quadratic equations, if they exist, by the method of completing the square:
1)2x^{2}-7x+3
Sol.The given quadratic equation is
2x^{2}-7x+3
Shifting constant term to R.H.S.,
2x^{2}-7x=-3
X^{2}-\frac{7}{2}x=-\frac{3}{2}
| dividing throughout by 2
Add (\frac{1}{2} \:\: coeff. \:\: of \:\: x)^{2}
i.e (\frac{1}{2} \:\: X \:\: \frac{7}{2})^{2}
i.e., (\frac{7}{4})^{2}
x^{2}-\frac{7}{2}x+(\frac{7}{4})^{2}=(\frac{7}{4})^{2}-\frac{3}{2}
=\frac{49}{16}-\frac{3}{2}
=\frac{49-24}{16}
\Rightarrow (x-\frac{7}{4})^{2}=\frac{25}{16}
Taking square roots of both sides,
x - \frac{7}{4} = ± \sqrt{\frac{25}{16}}
x-\frac{7}{4}=±\frac{5}{4}
x=\frac{7}{4}±\frac{5}{4}
a=\frac{7}{4}+\frac{5}{4}
x=\frac{12}{4}
x=3 and \frac{1}{2}
hence, the roots of the quadratic equation 2x^{2}-7x+3
ii)2x^{2}+x-4=0
Sol.The given quadratic equation is
2x^{2}
2x^{2}+x=4
Dividing every term by a=2 to make coefficient of x^{2}
X^{2}+\frac{1}{2}
Add (\frac{1}{2} \:\: coefficient \:\: of \:\: x)^{2}
i.e., (\frac{1}{2} \:\: X \:\: \frac{1}{2})^{2}=\frac{1}{4}^{2}
X^{2}+\frac{1}{2}x+(\frac{1}{2})^{2}=2+(\frac{1}{4})^{2}=2+\frac{1}{16}
(x+\frac{1}{4})^{2}=\frac{32+1}{16}=\frac{33}{16}
Taking square roots of both sides
X + \frac{1}{4} = ±\sqrt{\frac{33}{16}}
X=\frac{-1}{4}±\frac{\sqrt{33}}{4}=\frac{-1±\sqrt{33}}{4}
Hence the roots of the given equation are
X=\frac{-1+\sqrt{33}}{4}
iii)4x^{2}+4\sqrt{3}x+3
Sol.The given quadratic equation is
4x^{2}+4\sqrt{3}x+3
Shifting constant term to R.H.S.,
4x^{2}+4\sqrt{3}x
Dividing every term by a=4 to make coefficient of x^{2}
X^{2}+\sqrt{3}x=-\frac{3}{4}
Adding (\frac{1}{2}coeff. Of x)^{2} i.e., (\frac{\sqrt{3}}{2})^{2}
X^{2}+\frac{2\sqrt{3}}{2}x+(\frac{\sqrt{3}}{2})^{2}=(\frac{\sqrt{3}}{2})^{2}-\frac{3}{4}
\Rightarrow (x+\frac{\sqrt{3}}{2})^{2}=\frac{3}{4}-\frac{3}{4}
Taking square roots on both sides,
X+\frac{\sqrt{3}}{2}
X=-\frac{\sqrt{3}}{2}±0=-\frac{\sqrt{3}}{2}+0, -\frac{\sqrt{3}}{2}-0
X=-\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}
i.e., roots are equal.
Remark . here root -\frac{\sqrt{3}}{2}
iv)2x^{2}+x+4
Sol.The given quadratic equation is
2x^{2}+x+4
Shifting constant term to R.H.S.,
2x^{2}+x=-4
X^{2}+\frac{1}{2}x=-2
|Dividing throughout by 2
Ass (\frac{1}{2}coeff. Of x)^{2} i.e. (\frac{1}{2} x \frac{1}{2})^{2}
i.e. (\frac{1}{4})^{2}
x^{2}+2\frac{1}{4}x+(\frac{1}{4})^{2}=\frac{1}{16}-2
(x+\frac{1}{4})^{2}=\frac{1}{16}-2
=\frac{1-32}{16}
(x+\frac{1}{4})^{2}=-\frac{31}{16}
Clearly R.H.S is negative
But (x+\frac{1}{4})^{2}
Any real value of x because the square of a real number cannot be negative . Hence the given equation has no real roots i.e., solutions of the given equation do not exist.
2.Find the roots of the quadratic equations given in Q.1 above by applying the quadratic formula.
i)2x^{2}-7x+3=0
Sol.The given quadratic equation is
2x^{2}-7x+3=0
| ax^{2}+bx+c=0
Here , a=2 b=-7 c=3
So, D=b^{2}-4ac=(-7)^{2}-4(2)(3)
=49-24
25≥0
Therefore,
x=\frac{-b±\sqrt{D}}{2a}
x=\frac{-(-7)±\sqrt{25}}{2(2)}=\frac{7±5}{4}
=\frac{7+5}{4}, \frac{7-5}{4}
=3, \frac{1}{2}
ii)2x^{2}+x-4=0
Sol.The given quadratic equation is
2x^{2}+x-4=0
Here, a=2 b=1 c=-4
D=b^{2}-4ac
=(1)^{2}-4(2)(-4)
=1+32
=33≥0
Therefore,
x=\frac{-b±\sqrt{D}}{2a}
=\frac{-1±\sqrt{33}}{2(2)}=\frac{-1±\sqrt{33}}{4}
=\frac{-1+\sqrt{33}}{4}, \frac{-1-\sqrt{33}}{4}
So, the roots are
\frac{-1+\sqrt{33}}{4}
iii)4x^{2}+4\sqrt{3}x+3
Sol.The given quadratic equation is
4x^{2}+4\sqrt{3}x+3
Here, a=4 b=4\sqrt{3}
D=b^{2}-4ac
=(4\sqrt{3})^{2}-4(4)(3)
=16 x 3-16 x3=0
Therefore,
X=\frac{-b±\sqrt{D}}{2a}
|using the quadratic formula
=\frac{-4\sqrt{3}±\sqrt{0}}{2x4}
=\frac{-4\sqrt{3}+0}{8}, \frac{-4\sqrt{3}-0}{8}
=-\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}
So, both the roots are -\frac{\sqrt{3}}{2}
iv)2x^{2}
Sol.The given quadratic equation is
\frac{-4\sqrt{3}±0}{8}
Here, a=2 b=1 c=4
So D=b^{2}-4ac
=(1)^{2}-4(2)(4)
=-31<0
Therefore X=\frac{-b±\sqrt{D}}{2a}
=\frac{-1±\sqrt{31}}{4}
Now \sqrt{-31}
So, there are no real roots of the given equation , i.e., the solutions of the given equation do not exist.
3.Find the roots of the following equations:
i)x-\frac{1}{x}
Sol.The given equation is
x-\frac{1}{x}
taking L.C.M
\frac{x^{2}-1}{x}
Cross -multiplying
X^{2}-1=3x
X^{2}-3x-1=0
Which is quadratic equation in x.
Here,
A=1, b=-3, c=-1
So, D=b^{2}-4ac=(-3)^{2}-4(1)(-1)
=9+4
=13≥0
Therefore
X=\frac{-b±\sqrt{D}}{2a}
=\frac{-(-3)±\sqrt{13}}{2(1)}=\frac{3±\sqrt{13}}{2}
=\frac{3+\sqrt{13}}{2}, \frac{3-\sqrt{13}}{2}
So, the roots are \frac{3+\sqrt{13}}{2}
ii)\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}
Sol.The given equation is
\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}
Taking L.C.M
\frac{(x-7)-(x+4)}{(x+4)(x-7)}=\frac{11}{30}
\frac{x-7-x+4}{(x+4)(x-7)}=\frac{11}{30}
\frac{11}{(x+4)(x-7)}=\frac{11}{30}
Dividing both sides by 11,
\frac{-1}{(x+4)(x-7)}=\frac{1}{30}
Cross-multiplying
(x+4)(x-7)=-30
(x^{2}-7x+4x-28
(x^{2}-3x-28
X^{2}
Which is a quadratic equation in x.
Here , a=1, b=-3, c=2
So, D=b^{2}-4ac
=(-3)^{2}-4(1)(2)
=1≥0
Therefore,
X=\frac{-b±\sqrt{D}}{2a}
|using the quadratic formula
X=\frac{-(-3)±\sqrt{1}}{2x1}
X=\frac{3±1}{2}
X=\frac{3+1}{2}, \frac{3-1}{2}
X=2, 1
So, the roots are 2 and 1.
4.The sum of the reciprocals of Rehman’s ages, (in years) 3 years ago and 5 years from
now is \frac{1}{3}
Sol.Let the present age of Rehman be x years.
Then,
Rehmans age 3 years ago =(x-3)years and, Rehmans age 5 years from now
=(x+5) years
According to the question,
\frac{1}{x-3}+\frac{1}{x+5}=\frac{1}{3}
Taking L.C.M
\frac{(x+5)+(x-3)}{(x-3)(x+5)}=\frac{1}{3}
\frac{2x+2}{(x-3)(x+5)}=\frac{1}{3}
Cross -multipying
(x-3)(x+5)=3(2x+2)
X^{2}+5x-3x-15=6x+6
X^{2}+2x-15=6x+6
x^{2}-4x-21
which is a quadratic equation in x.
here, a=1 b=-4 c=-21
D=b^{2}-4ac=(-4)^{2}-4(1)(-21)
=16+84=100
Using the quadratic formula, we get
X=\frac{-b±\sqrt{D}}{2a}
X=\frac{-4±\sqrt{100}}{2}
=\frac{4±10}{2}
=\frac{4+10}{2}, \frac{4-10}{2}
=7, -3
Since , x is the age , it cannot be negative, so, we reject the root x=-3.
Therefore, x=7 gives the present age of Rehman as 7 years.
5.In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.
Sol.Let shefali’s marks in Mathematics be x,
Then shefali’s marks in English
=(30-x)
|\because
(x+2){(30-x)}-3}=210
(x+2)(27-x)=210
27x-x^{2}
-x^{2}+25x+54-210
-x^{2}+25x-156
Dividing by -1
X^{2}-25x+156
Which is a quadratic equation in x
Here a=1 b=-25 c=156
D=b^{2}-4ac
=(-25)^{2}-4(1)(156)
=625-624=1
Using the quadratic formula , we get
X=\frac{-b±\sqrt{D}}{2a}=\frac{25±\sqrt{1}}{2x1}=\frac{25±1}{2}
X=\frac{25+1}{2}, \frac{25-1}{2}
30-x=30-13 or 30-12
30-x=17, 18
Therefore , either shefalis marks in mathematics are 13 and in English 17 or her marks in mathematics are 12 and in English 18.
6.The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
Sol.Let the shorter side of the rectangular field be x meteres.
Then the longer side of the rectangular field
=\sqrt{(length \:\: of \:\: the \:\: shorter \:\: side})^{2}+(length \:\: of \:\: the \:\: longer \:\: side)^{2}
=\sqrt{x^{2}+(x+30)^{2}}
According to the question
=\sqrt{x^{2}+(x+30)^{2}}
Squaring both sides , we get
X^{2}+(x+30)^{2}=(x+60)^{2}
X^{2}+x^{2}
=x^{2}
X^{2}
Which is a quadratic equation in x
Here a=1 b=-60 c=-2700
So, D=b^{2}-4ac
=(-60)^{2}-4(1)(-2700)
=3600+10800=14400
Using the quadratic formula we have
X=\frac{-b±\sqrt{D}}{2a}
=\frac{-(-60)±\sqrt{14400}}{2x1}=\frac{60±120}{2}
=\frac{60+120}{2}, \frac{60-120}{2}
X=90, -30
Since x cannot be negative , being a dimension , therefore the length of the shorter side of the rectangular field is 90 metres.
The length of the longer side
=x+30
=90+30
=120 metres.
Hence, the sides of the field are 120 metres and 90 metres.
7.The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.
Sol.Let the larger number be x
Then , A.T.Q.
(small \:\: number)^{2}=8(large \:\: number)
=8x………..(1)
Again according to situation of the question ,
(larger \:\: number)^{2}-(small \:\: number)^{2180}
X^{2}-8x
Shifting constant term to L.H.S.,
X^{2}-8x-180
Here a=1 b=-8 c=-180
\therefore
=64+720=784
Using the quadratic formula, we have
X=\frac{-b±\sqrt{D}}{2a}=\frac{8±\sqrt{784}}{2}
X=\frac{8±28}{2}=\frac{8+28}{2}, \frac{8-28}{2}
X=18, -10
X=-10 is inadmissible as then smaller number
=\sqrt{8x}
=\sqrt{8 x (-10)}=\sqrt{-80}
Which does not exist because -80 is negative
\therefore x
\therefore \sqrt{8x}=\sqrt{8 x 18}=\sqrt{144}
Hence, the two numbers are 18, 12 or 18, -12.
8.A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.
Sol.Let the uniform speed of the train be x km/h.
Then the time taken by the train to travel 1360 km=\frac{360}{x}
|time =\frac{Distance}{speed}
If the speed had been 5 km/h more i.e., speed is (x+5) km/h, then the time by the train to travel 360km =\frac{360}{x+5}
|time =\frac{Distance}{speed}
According to the question,
\frac{360}{x+5}=\frac{360}{x}
\frac{360}{x}-\frac{360}{x+5}
360(\frac{1}{x}-\frac{1}{x+5})
Dividing by 360,
\frac{1}{x}-\frac{1}{x+5}=\frac{1}{360}
Taking L.C.M
\frac{x+5-x}{x(x+5)}=\frac{1}{360}
\frac{5}{x(x+5)}=\frac{1}{360}
Cross-multiplying
X(x+5)=(5)(360)
X(x+5)=1800
X^{2}+5x-1800
Here a=1 b=5 c=-1800
So D=b^{2}-4ac=5^{2}-4(1)(-1800)
=25+7200=7225
Using the quadratic formula, we have
X=\frac{-b±\sqrt{D}}{2a}
X=\frac{-5±\sqrt{7225}}{2}
X=\frac{-5±85}{2}=\frac{-5+85}{2}, \frac{-5-85}{2}
X=40, -45
Since , x is the speed of the train it can not be negative . so we reject the root x=-45.
Therefore , x=40 gives the speed of the train as 40 km/h.
9.Two water taps together can fill a tank in 9\frac{3}{8}
Sol.Let the smaller tap fill the tank in x hours.
Then , the larger tap will fill the tank in (x-10)hours.
\therefore
And, part pf the tank filled by the larger tap in 1 hour =\frac{1}{x-10}
\therefore
\therefore
|\because 9\frac{3}{8}=9+\frac{3}{8}=\frac{75}{8}
According to the question
\frac{75}{8}(\frac{1}{x}+\frac{1}{x-10})
| whole tank is filled in 9\frac{3}{8}hours (given)
|\because
Dividing by \frac{75}{8},
\frac{1}{x}+\frac{1}{x-10}=\frac{8}{75}
Taking l.C.M
\frac{x-10+x}{x(x-10)}=\frac{8}{75}
\frac{2x-10}{x(x-10)}=\frac{8}{75}
Cross multiplying
8x(x-10)=75(2x-10)
8x^{2}-80x=150x-750
8x^{2}-230x+750=0
Comparing eith ax^{2}+bx+c=0, we get a=8, b=-230, c=750
So, D=b^{2}-4ac
=(-230)^{2}-4(8)(750)
=52900-8 x 3000
52900 – 24000=28900
Using the quadratic formula, we get
X=\frac{-b±\sqrt{D}}{2a}=\frac{230±\sqrt{28900}}{2x8}
X=\frac{230±\sqrt{28900}}{16}=\frac{230±170}{16}
=\frac{230+170}{16}, \frac{230-170}{16}
=\frac{400}{16}, \frac{60}{16}
=25, \frac{15}{4}
X=\frac{15}{4}
=\frac{15}{4}-10=-\frac{25}{4}
X=25
x-10=25-10=15
hence the time in which the smaller tap and the larger tap fill the tank separately are 25 hours and 15 hours respectively.
10.An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11km/h more than that of the passenger train, find the average speed of the two trains.
Sol.Let the average speed of the passenger train be x km/h.
Then, the average speed of the express train =(x+11)km/h.
Time taken by the passenger train to travel 132km between Mysore and Bangalore
=\frac{132}{x}h
Time taken by the express train to travel 132 km between Mysore and Bangalore
=\frac{132}{x+11}h
According to the question,
\frac{132}{x+11}=\frac{132}{x}-1
1=\frac{132}{x}-\frac{132}{x+11}
\frac{132}{x}-\frac{132}{x+11}
132(\frac{1}{x}-\frac{1}{x+11})
Dividing by 132,
\frac{1}{x}-\frac{1}{x+11}=\frac{1}{132}
Taking L.C.M.,
\frac{(x+11)-x}{x(x+11)}=\frac{1}{132}
\frac{11}{x(x+11)}=\frac{1}{132}
Cross multiplying
X(x+11)=11 x 132
X(x+11)=(11)(132)
X(x+11)=1452
X^{2}+11x-1452
This is of the from ax^{2}+bx+c=0
Comparing , we get
a=1, b=11, c=-1452
So, D=b^{2}-4ac
=(11)^{2}-4(1)(-1452)
=121+4(1452)
=121+5808=5929
Using the quadratic formula, we have
X=\frac{-b±\sqrt{D}}{2a}
X=\frac{-11±\sqrt{5929}}{2}=\frac{-11±77}{2}
X=\frac{-11+77}{2}, \frac{-11-77}{2}
X=\frac{66}{2}, \frac{-88}{2}
X=33, -44
Since x is the average speed of the passenger train , it cannot be negative. So , we reject the root x=-44
Therefore, x=33 gives the average speed of the passenger train as 33 km/h.
\therefore
=x+11
=33+xx
44 km/h
11.Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.
Sol.Let the side of the smaller square be x m.
Then perimeter of the smaller square =4xm
Therefore, perimeter of the larger square
=(4x+24)m
=4x side of larger square
Therefore, side of the larger square
=\frac{4x+24}{4} m =\frac{4(x+6)}{4}
=(x+6)m
Again
Area of the smaller square =x^{2}cm^{2}
Area of the larger square =(x+6)^{2}cm^{2}
According to the question ,
X^{2}+(x+6)^{2}=468
X^{2}+x^{2}+12x+36=468
2x^{2}+12x-432=0
X^{2}+6x-216
|Dividing throughout by 2
Which is a quadratic equation in x.
Comparing with ax^{2}
a=1, b=6, c=-216
therefore
D=b^{2}-4ac=6^{2}-4(1)(-216)
=36+564
900≥0
So, the given equation can be solved for x.
Using the quadratic formula, we get
X=\frac{-b±\sqrt{D}}{2a}
=\frac{-6±\sqrt{900}}{2}=\frac{-6±30}{2}
\frac{-6+30}{2}, \frac{-6-30}{2}
=12, -18
Since x cannot be negative, being the length of side of the smaller square, therefore the length of the side of the smaller square is 12m.
\therefore
=12+6=18m.
0 Doubts's