Exercise 5.1
1.In which of the following situations, does the list of numbers involved make an arithmetic progression, and why?
(i) The taxi fare after each km when the fare is ` 15 for the first km and ` 8 for each additional km.
Sol.taxi fare for 1 km
=Rs 15=a_1
A.T.Q.;Taxi fare for 2 km
=Rs 15+Rs 8 =Rs 23=a_2
Taxi fare for 3 km
=Rs 23+Rs8=Rs 31=a_3
Taxi fare for 4 km
=Rs 31+Rs 8=Rs 39=a_4
And so on .
a_2-a_1=Rs 23-Rs 15=Rs 8
a_3-a_2=Rs 31-Rs 23=Rs 8
a_4-a_3=Rs 39-Rs 31=Rs 8
i.e., a_k+1-a_k
So, this list of numbers forms an arithmetic progression with the first term a=rs 15 and the common different d=rs 8.
(ii) The amount of air present in a cylinder when a vacuum pump removes 1/ 4 of the air remaining in the cylinder at a time.
Sol.Amount of air present in the cylinder =x units (say)=a_1
ATQ.;amount of air present in the cylinder after one time removal of air by the vacuum pump =x-\frac{x}{4}=\frac{3x}{4} \:\:units =a_2
Amount of air present in the cylinder after two times removal of air by the vaccum
Pump =\frac{3x}{4}-\frac{1}{4}(\frac{3x}{4})=\frac{3x}{4}-\frac{3x}{16}=\frac{9x}{16}
Amount of air present in the cylinder after three times removal of air by the vacuum pump
=\frac{9x}{16}-\frac{1}{4}(\frac{9x}{16})=\frac{9x}{16}-\frac{9x}{64}
=\frac{36x-9x}{64}=\frac{27x}{64} \:\: units =a_4
and so on.
a_2-a_1=\frac{3x}{4}-x
=\frac{3x-4x}{4}=-\frac{x}{4}
a_3-a_2=\frac{9}{16}x-\frac{3}{4}x
=\frac{9x-12x}{16}=\frac{-3x}{16}units
As a_2-a_1≠a_3-a_2
This list of numbers does not form an AP.
(iii) The cost of digging a well after every metre of digging, when it costs ` 150 for the first metre and rises by ` 50 for each subsequent metre.
Sol.cost of digging the well after 1 meter of digging =Rs 150=a_1
Cost of digging the well after 2 meters of digging
=Rs 150+Rs 50=Rs200=a_2
Cost of digging the well after 3 metres of digging
=Rs 200+ Rs 50 =Rs 250=a_3
Cost of digging the well after 4 metres of digging
=Rs 250+Rs 50=Rs 300=a_4
And so on.
a_2-a_1=Rs 200-Rs150=Rs50
a_3-a_2=Rs 250-Rs 200=Rs 50
a_4-a_3=Rs 300-Rs 250=Rs 50
i.e., a_{k+1}
(iv) The amount of money in the account every year, when ` 10000 is deposited at compound interest at 8 % per annum.
Sol.we know that amount of present value P at r% compound interest after n years
=P(1+\frac{r}{100})^{n}
Amount of money after 1 year
=Rs 10000 (1+\frac{8}{100})=a_1
Amount of money after 2 years
=Rs 10000(1+\frac{8}{100})^{2}=a_2
Amount of money after 3 years
=Rs 10000(1+\frac{8}{100})^{3}=a_3
Amount of money after 4 years
=Rs 10000(1+\frac{8}{100})^{4}=a_4
And so on.
a_2-a_1
=Rs 10000(1+\frac{8}{100})^{2}-Rs 10000(1+\frac{8}{100})
=Rs 10000(1+\frac{8}{100})(1+\frac{8}{100}-1)
=Rs 10000 (1+\frac{8}{100})(\frac{8}{100})
a_3-a_2
=Rs 10000(1+\frac{8}{100})^{2}-Rs 10000(1+\frac{8}{100})^{2}
=Rs 10000(1+\frac{8}{100})^{2}(1+\frac{8}{100}-1)
=Rs 10000(1+\frac{8}{100})^{2}(\frac{8}{100})
As
a_2-a_1≠a_3-a_2,
This list of numbers does not form an AP.
2.Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(i) a = 10, d = 10
Sol.first term =a=10
Second term =10+d=10+10=20
Third term = 20+d=20+10=30
Fourth term = 30+d=30+10=40
Hence, first four terms of the given AP
Are
10, 20, 30, 40
(ii) a = –2, d = 0
Sol.first term =a=-2
Second term =-2+d=-2+0=-2
Third term =-2+d=-2+0=-2
Fourth term =-2+d=2+0=-2
Hence, first four terms of the given AP are -2, -2, -2 ,-2 respectively.
(iii) a = 4, d = – 3
Sol.First term =a=4
Second term =4+d=4+(-3)=1
Third term =1+d=1+(-3)=-2
Fourth term =-2+d= -2+(-3)
=-5
Hence, four first terms of the given AP are 4, 1, -2, -5.
(iv) a = – 1, d = 1/ 2
Sol.first term = a=-1
Second term =-1+d=-1+\frac{1}{2}=-\frac{1}{2}
Third term =-\frac{1}{2}+d=-\frac{1}{2}+\frac{1}{2}=0
Fourth term =0+d=0+\frac{1}{2}=\frac{1}{2}
(v) a = – 1.25, d = – 0.25
Sol.first term =a=-1.25
Second term =-1.25+d
=-1.25+(-0.25)
=-1.50
Third term =-1.50+d
=-1.50+(-.025)
=-1.75
Fourth term =-1.75+d
=-1.75+(-0.25)
=-2.00
Hence first four terms of the given AP are -1.25, -1.75, -2.00.
3.For the following APs, write the first term and the common difference:
(i) 3, 1, – 1, – 3, . . .
Sol.first term (a)=3
Common difference (d)
=a_2-a_1=1-3=-2
(ii) – 5, – 1, 3, 7, . . .
Sol.First term (a)=-5
Common difference(d)
=a_2-a_1=-1-(-5)
=-1+5=4
iii)\frac{1}{3},\frac{5}{3},\frac{9}{3}, \frac{13}{3},
First term (a)=\frac{1}{3}
common difference (d)
=a_2-a_1=\frac{5}{3}-\frac{1}{3}=\frac{4}{3}
iv)0.6, 1.7, 2.8, 3.9,…
Sol.first term (a)=0.6
common difference (d)=a_2-a_1
=1.7-0.6=1.1
4.Which of the following are APs ? If they form an AP, find the common difference d and write three more terms.
(i) 2, 4, 8, 16, . .
Sol.a_2-a_1=4-2=2
a_3-a_2=8-4=4
a_4-a_3=16-8=8
As, a_2-a_1≠a_3-a_2
So, the given list of numbers does not form an AP.
ii)2, \frac{5}{2},3, \frac{7}{2},
a_2-a_1=\frac{5}{2}-2=\frac{1}{2}
a_3-a_2=3-\frac{5}{2}=\frac{1}{2}
a_4-a_3=\frac{7}{2}-3=\frac{1}{2}
i.e., a_{k+1}-a_k
the next three terms are:
\frac{7}{2}+\frac{1}{2}=4, 4+\frac{1}{2}=\frac{9}{2}
And \frac{9}{2}+\frac{1}{2}=5
iii)-1.2, -3.2, -5.2, -7.2……
a_2-a_1=-3.2-(-1.2)
=-3.2+1.2
=-2.0
a_3-a_2=-5.2-(-3.2)
=-5.2+3.2
=-2.0
a_4-a_3=-7.2-(-5.2)
=-7.2+5.2
=-2.0
i.e., a_{k+1}
So, the given list of numbers forms an AP with common different d=-2.0
The next three terms are:
-7.2+(-2.0)=-9.2
-9.2+(-2.0)=-11.2
-11.2+(-2.0)=-13.2
iv)-10, -6, -2, 2,….
a_2-a_1=-6-(-10)
=-6+10=4
a_3-a_2=-2-(-6)
=-2+6=4
a_4-a_3=2-(-2)
=2+2=4
So, the given list of numbers forms an AP with common different d=4
The next three terms are:
2+4=6, 6+4=10
10+4=14.
v)3, 3+\sqrt{2}, 3+2\sqrt{2}, 3+3\sqrt{2}
a_2-a_1=(3+\sqrt{3})-3=\sqrt{2}
a_3-a_2=(3+2\sqrt{2})-(3+\sqrt{2})
=2\sqrt{2}-\sqrt{2}=(2-1)\sqrt{2}=\sqrt{2}
a_4-a_3=(3+3\sqrt{2})-(3+2\sqrt{2})
=3\sqrt{2}-2\sqrt{2}=(3-2)\sqrt{2}=\sqrt{2}
Ie., a_{k+1} -a_k
So, the given list of numbers forms an AP with the common difference d=\sqrt{2}
The next three terms are :
(3+3\sqrt{2})+\sqrt{2}=3+4\sqrt{2}
(3+4\sqrt{2})+\sqrt{2}=3+5\sqrt{2}
(3+5\sqrt{2})+\sqrt{2}=3+6\sqrt{2}
vi)0.2, 0.22, 0.222, 0.2222,…
a_2-a_1=0.22-0.2=0.02
a_3-a_2=0.222-0.22=0.002
a_2-a_1≠a_3-a_2
vii)0, -4, -8, -12,…
a_2-a_1=-4-0 =-4
a_3-a_2=-8-(-4) = -8+4=-4
a_4-a_3=-12-(-8)=-12+8=-4
i.e.:a_{k+1} -a_k
So, the given list of numbers forms an AP with the common difference d=-4.
The next three terms are:
-12+(-4)=-12-4=-16,
-16+(-4)=-16-4=-20
-20+(-4)=-20-4=-24
viii)-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}
a_2-a_1=-\frac{1}{2}-(-\frac{1}{2})=-\frac{1}{2}+\frac{1}{2}=0
a_3-a_2=-\frac{1}{2}-(-\frac{1}{2})=-\frac{1}{2}+\frac{1}{2}=0
a_4-a_3=-\frac{1}{2}-(-\frac{1}{2})=-\frac{1}{2}+\frac{1}{2}=0
i.e.,a_{k+1} -a_k
So, the given list of numbers forms an AP with the common difference d=0.
The next three terms are:
-\frac{1}{2}+0=-\frac{1}{2}
And
-\frac{1}{2}+0=-\frac{1}{2}
ix)1, 3, 9, 27,…..
a_2-a_1=3-1=2
a_3-a_2=9-3=6
a_2-a_1≠a_3-a_2
x)a, 2a, 3a, 4a…..
a_2-a_1=2a-a =a
a_3-a_2=3a-2a=a
a_4-a_3=4a-3a=a
i.e., a_{k+1} -a_k
the next three terms are:
4a+a=5a, 5a+a=6a
6a+a=7a.
xi)a, a^{2}, a^{3}, a^{4}
a_2-a_1=a^{2}-a=a(a-1)
a_3 -a_2=a^{3}-a^{2}=a^{2}(a-1)
As a_2-a_1≠a_3-a_2
xii)\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}
a_2-a_1=\sqrt{8}-\sqrt{2}=\sqrt{4X2}-\sqrt{2}
=2\sqrt{2}-\sqrt{2}=\sqrt{2}(2-1)=\sqrt{2}
a_3-a_2=\sqrt{18}-\sqrt{8}=\sqrt{9X2}-\sqrt{4X2}
=3\sqrt{2}-2\sqrt{2}=\sqrt{2}(3-2)=\sqrt{2}
a_4-a_3=\sqrt{32}-\sqrt{18}
=\sqrt{16X2}-\sqrt{9X2}
=\sqrt{16}\sqrt{2}-\sqrt{9}\sqrt{2}
=4\sqrt{2}-3\sqrt{2}
=(4-3)\sqrt{2}=\sqrt{2}
i.e., a_{k+1} ,-a_k
the next three terms are:
\sqrt{32}+\sqrt{2}=4\sqrt{2}+\sqrt{2}=5\sqrt{2}
=\sqrt{25}\sqrt{2}=\sqrt{25X2}=\sqrt{50},
5\sqrt{2}+\sqrt{2}=6\sqrt{2}=\sqrt{36} X \sqrt{2}
=\sqrt{36 X 2}=\sqrt{72}
And 6\sqrt{2}+\sqrt{2}=7\sqrt{2}=\sqrt{49}\sqrt{2}
\sqrt{49 X 2}=\sqrt{98}
xiii) \sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}
a_2-a_1=\sqrt{6}-\sqrt{3}=\sqrt{3X2}-\sqrt{3}
=\sqrt{3}\sqrt{2}-\sqrt{3}=\sqrt{3}(\sqrt{2}-1)
a_3-a_2=\sqrt{9}-\sqrt{6}=\sqrt{3X3}-\sqrt{3X2}
=\sqrt{3}\sqrt{3}-\sqrt{3}\sqrt{2}
=\sqrt{3}(\sqrt{3}-\sqrt{2})
As a_2-a_1≠a_3-a_2
(xiv)1^{2}, 3^{2}, 5^{2}, 7^{2}
a_2-a_1=3^{2}-1^{2}=9-1=8
a_3-a_2=5^{2}-3^{2}=25-9=16
as a_2-a_1≠a_3-a_2
xv)1^{2}, 5^{2}, 7^{2}, 73,
a_2-a_a=5^{2}-1^{1}
=25-1=24
a_3-a_2=7^{2}-5^{2}
=49-25=24
a_4-a_3=73-7^{2}=73-49=24
i.e., a_{k+1}
So, the given list of numbers forms an AP with the common difference d=24.
The next three terms are:
73+24=97, 97+24=121
And 121+24=145.
0 Doubts's