Loading web-font TeX/Math/Italic
Home CBSE 10th Class MATHEMATICS (10th)

8.2 Trigonometric Ratios

8.2 Trigonometric Ratios

Let us take a right triangle ABC as shown in Fig. 8.4.

Here, ∠ CAB (or, in brief, angle A) is an acute angle. Note the position of the side BC with respect to angle A. It faces ∠ A. We call it the side opposite to angle A.

AC is the hypotenuse of the right triangle and the side AB is a part of ∠ A. So, we call it the side adjacent to angle A.the position of sides change when you consider angle C in place of A (see Fig. 8.5).

The trigonometric ratios of the angle A in right triangle ABC (see Fig. 8.4) are defined as follows :Sine of \angle A=\frac{side\:L\: opposite\:\: to \:\:angle A}{hypotenuse}=\frac{BC}{AC}

Cosine of \angle A=\frac{side \:\:adjacent\:\: to \:\:angle A}{hypotenuse}=\frac{AB}{AC}

Tangent of \angle A=\frac{side\:\: opposite\:\: to \:\:angle A}{ side \:\:adjacent\:\: to\:\: angle A }=\frac{BC}{AB}

Cosecant of \angle A=\frac{1}{sine \:\:of\:\: \angle A}=\frac{hypotenuse}{side\:\: opposite\:\: to \:\:angle A}=\frac{AC}{BC}

Secant of \angle A=\frac{1}{cosine \:\:of \angle A}=\frac{hypotenuse}{side\:\: adjacent\:\: to \:\:angle A} =\frac{AC}{AB}

Cotangent of \angle A=\frac{1}{tangent \angle A}=\frac{side\:\: adjacent \:\:to\:\: angle A}{side opposite\:\: to \:\:angle A}=\frac{AB}{BC}

The ratios defined above are abbreviated as sin A, cos A, tan A, cosec A, sec A and cot A respectively. Note that the ratios cosec A, sec A and cot A are respectively, the reciprocals of the ratios sin A, cos A and tan A.

Also , observe that tan A=\frac{BC}{AB}=\frac{\frac{BC}{AC}}{\frac{AB}{AC}}=\frac{sin A}{cos A} and cot A =\frac{cos A}{sin A}

So, the trigonometric ratios of an acute angle in a right triangle express the relationship between the angle and the length of its sides.

Example 1 : Given tan A =\frac{4}{3}

, find the other trigonometric ration of the angle A.

Solution : Let us first draw a right ∆ ABC (see Fig 8.8).Now , we know that tan A=\frac{BC}{AB}=\frac{4}{3}

.

Therefore, if BC = 4k, then AB = 3k, where k is a positive number.

Now, by using the Pythagoras Theorem, we have

AC^{2} = AB^{2} + BC^{2} = (4k )^{2} + (3k)^{2} = 25k^{2}

So, AC = 5 k

Now, we can write all the trigonometric ratios using their definitions.

Sin A=\frac{BC}{AC}=\frac{4k}{5k}=\frac{4}{5}

Cos A=\frac{AB}{AC}=\frac{3k}{5k}=\frac{3}{5}

Therefore , cot A=\frac{1}{tan A}=\frac{3}{4},\:\: cosec A=\frac{1}{sin A}=\frac{5}{4}

and sec A=\frac{1}{cos A}=\frac{5}{3}
.

Example 2 : If ∠ B and ∠ Q are acute angles such that sin B = sin Q, then prove that ∠ B = ∠ Q.

Solution : Let us consider two right triangles ABC and PQR where sin B = sin Q.We have     sin B=\frac{AC}{AB}

And    sin Q=\frac{PR}{PQ}

Then   \frac{AC}{AB}=\frac{PR}{PQ}

Therefore,   \frac{AC}{PR}=\frac{AB}{PQ}=k

, say……………(1)

Now , using Pythagoras theorem,

BC=\sqrt{AB^{2}-AC^{2}}

And    QR=\sqrt{PQ^{2}-PR^{2}}

So, \frac{BC}{QR}=\frac{\sqrt{AB^{2}-AC^{2}}}{\sqrt{PQ^{2}-PR^{2}}}=\frac{k^{2}PQ^{2}-k^{2}PR^{2}}{\sqrt{PQ^{2}-PR^{2}}}=\frac{k\sqrt{PQ^{2}-PR^{2}}}{\sqrt{PQ^{2}-PR^{2}}}=k

…………(2)

From (1) and (2), we have

\frac{AC}{PR}=\frac{AB}{PQ}=\frac{BC}{QR}

Then, by using Theorem 6.4, ∆ ACB ~ ∆ PRQ and therefore, ∠ B = ∠ Q.

Example 3 : Consider ∆ ACB, right-angled at C, in which AB = 29 units, BC = 21 units and ∠ ABC = θ (see Fig. 8.10). Determine the values of

(i) cos^{2} θ + sin^{2} θ,

(ii) cos^{2} θ – sin^{2} θ

.

Solution : In ∆ ACB, we have

AC=\sqrt{AB^{2}-BC^{2}}=\sqrt{29^{2}-21^{2}}

=\sqrt{(29-21)(29+21)}=\sqrt{8X50}=\sqrt{400}=20

units

So, sin\theta = \frac{AC}{AB}=\frac{20}{29}, cos\theta =\frac{BC}{AB}=\frac{21}{29}.

i)cos^{2}\theta +sin^{2}\theta

=(\frac{20}{29})^{2}+(\frac{21}{29})^{2}=\frac{20^{2}+21^{2}}{29^{2}}=\frac{400+441}{841}=1

ii) cos^{2}\theta - sin^{2}\theta

=(\frac{20}{29})^{2}- (\frac{21}{29})^{2} =\frac{21+20)(21-20)}{29^{2}}=\frac{41}{841}

Example 4 : In a right triangle ABC, right-angled at B, if tan A = 1, then verify that 2  sin A cos A = 1.

Solution : In \Delta ABC,\:\: tan A=\frac{BC}{AB}=1

i.e.,           BC=AB

let AB=BC=k, where k is a positive number.

Now,    AC=\sqrt{AB^{2}+BC^{2}}

=\sqrt{k^{2}+k^{2}}=k\sqrt{2}

Therefore,  sin A=\frac{BC}{AC}=\frac{1}{\sqrt{2}}  and  cos A=\frac{AB}{AC}=\frac{1}{\sqrt{2}}

So,   2sin A cos A=2(\frac{1}{\sqrt{2}})(\frac{1}{\sqrt{2}})=1

, which is the required value.

Example 5 : In ∆ OPQ, right-angled at P, OP = 7 cm and OQ – PQ = 1 cm (see Fig. 8.12). Determine the values of sin Q and cos Q.

Solution : In ∆ OPQ, we have

OQ^{2}=OP^{2}+PQ^{2}

i.e.,  (1+PQ)^{2}=OP^{2}+PQ^{2}

i.e.,   1+PQ^{2}+2PQ=OP^{2}+PQ^{2}

i.e., 1+2PQ=7^{2}

i.e.,   PQ=24 cm  and OQ=1+PQ=25 cm

so,    sin Q=\frac{7}{25} and Q=\frac{24}{25}.