7.2 Distance Between Two Points
The two points (2, 0) and (6, 0) lie on the X-axis as shown in figure
It is easy to see that the distance between two points A and B as 4 units
We can say the distance between points lying on X-axis is the difference between the x-coordinates.
What is the distance between (-2, 0) and (-6, 0)?
The difference in the value of x-coordinates is
(-6) - (-2) = -4 (Negative) We never say the distance in negative values. So, we will take absolute value of the difference
Therefore, the distance = | (- 6) - (-2)| = |-4| = 4 units. So, in general for the points A(x 1 , 0), B(x 2 , 0) on the X-axis, the distance between A and B is |x 2 – x |
Similarly, if two points lie on Y-axis, then the distance between the points A and B would be the difference between their y coordinates of the points
The distance between two points (0, y 1 ) (0, y 2 ) would be |y 2 - y 1 |.
For example, let the points be A(0, 2) and B(0, 7)
Then, the distance between A and B is |7 - 2| = 5 units
Consider the points A(x 1 , y 1 ) and B(x 2 , y 1 ). Since the y-coordinates are equal, points lie on a line, parallel to X-axis.
AP and BQ are drawn perpendicular to X-axis.
Observe the figure. APQB is a rectangle.
Therefore, AB = PQ.
PQ = |x 2 - x 1 | (i.e., The modulus of difference between x coordinates)
Similarly, line joining two points A(x 1 , y 1 ) and B(x 1 , y 2 ) is parallel to Y-axis. Then the distance between these two points is |y 2 - y 1 | (It is read as modulus of the difference of y coordinates)
Example-1. What is the distance between A (4,0) and B (8, 0).
Solution : The abosolute value of the difference in the x coordinates is |x2 - x1| = |8 - 4| = 4 units
Example-2. A and B are two points given by (8, 3), (-4, 3). Find the distance between A and B.
Solution : Here x1 and x2 are lying in two different quadrants and y-coordinate are equal. Distance AB = |x2 - x1| = |-4 - 8| = |-12| = 12 units
Let A(x1 , y1 ) and B(x2 , y2 ) be any two points in a plane as shown in figure. Draw AP and BQ perpendiculars to X-axis Draw a perpendicular AR from the point A on BQ.
Then OP = x 1 , OQ = x2
So, PQ = OQ - OP = x2 - x1
Observe the shape of APQR. It is a rectangle.
So PQ = AR = x2 - x 1 .
Also QB = y2 , QR = y1 ,
So BR = QB - QR = y2 - y1
In DARB (right triangle)
$$AB^{2}=AR^{2}+RB^{2}$$ (By Pythagorean theorem)
$$AB^{2}=(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}$$
i.e.,AB = $$\sqrt{($$x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$$
Hence, ‘d’ the distance between the points A and B is
d=$$\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$$
This is called the distance formula.Example-3. Let’s find the distance between two points A(4, 3) and B(8, 6)
Solution : Compare these points with (x 1 , y1 ), (x 2 , y 2 )
X1=4 x2=8 y1=3 y2=6
Using distance formula
d=$$\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$$
distance AB = =$$\sqrt{(x_{8}-x_{4})^{2}+(y_{6}-y_{3})^{2}}$$
$$\sqrt{4^{2}+3^{2}}$$
=$$\sqrt{16+9}=\sqrt{25}$$=5 units.
Example-4. Show that the points A (4, 2), B (7, 5) and C (9, 7) are three points lying on a same line
Solution : Let us find the distances AB, BC, AC by using distance formula,
d=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
so, $$AB=\sqrt{(7-4)^{2}+(5-2)^{2}}=\sqrt{3^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}$$
=$$\sqrt{9x2}=3\sqrt{2}units$$.
BC=$$\sqrt{(9-7)^{2}+(7-5)^{2}}=\sqrt{2^{2}+2^{2}}=\sqrt{4+4}=\sqrt{8}=2\sqrt{2}units$$
AC=$$\sqrt{(9-7)^{2}+(7-2)^{2}}=\sqrt{5^{2}+5^{2}}=\sqrt{25+25}=\sqrt{50}$$
=$$\sqrt{25x2}=5\sqrt{2}units$$.
Now $$AB + BC =3\sqrt{2}+2\sqrt{2}=5\sqrt{2}=AC$$. Therefore, that the three points (4, 2), (7, 5) and
(9, 7) lie on a straight line. (Points that lie on the same line are called collinear points).
Example-5. Do the points (3, 2), (-2, -3) and (2, 3) form a triangle?
Solution : Let us apply the distance formula to find the lengths PQ, QR and PR, where P(3, 2), Q(-2, -3) and R(2, 3) are the given points. We have
$$PQ=\sqrt{(-2-3)^{2}+(-3-2)^{2}}=\sqrt{(-5)^{2}+(-5)^{2}}=\sqrt{25+25}=\sqrt{50}$$=7.07 units
$$QR= \sqrt{(-2-3)^{2}+(-3-2)^{2}}=\sqrt{(-5)^{2}+(-5)^{2}}=\sqrt{25+25}=\sqrt{50}$$=7.07 units
$$QR=\sqrt{(2-(-2))^{2}+(3-(-3))^{2}}=\sqrt{(4)^{2}+(6)^{2}}=\sqrt{52}$$=7.21 units
$$PR=\sqrt{(2-3)^{2}+(3-2)^{2}}=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}$$=1.41 units
Since the sum of any two of these lengths is greater than the third length, the points P, Q and R form a triangle and all the sides of triangle are unequal.
Example-6. Show that the points (1, 7), (4, 2), (-1, -1) and (-4, 4) are the vertices of a square.
Solution : Let A(1, 7), B(4, 2), C(-1, -1)and D(-4, 4) be the given points.
One way of showing that ABCD is a square is to use the property that all its sides should be equal and both its diagonals should also be equal. Now, the sides are.
AB=$$\sqrt{(1-4)^{2}+(7-2)^{2}}=\sqrt{9+25}=\sqrt{34}$$
BC=$$\sqrt{(4+1)^{2}+(2+1)^{2}}=\sqrt{25+9}=\sqrt{34}$$units
CD=$$\sqrt{(-1+4)^{2}+(-1-4)^{2}}=\sqrt{9+25}=\sqrt{34}$$ units
DA=$$\sqrt{(-4-1)^{2}+(4-7)^{2}}=\sqrt{25+9}=\sqrt{34}$$ units
And diagonal are AC=$$\sqrt{(1+1)^{2}+(7+1)^{2}}=\sqrt{4+64}=\sqrt{68}$$ units
BD=$$\sqrt{(4+4)^{2}+(2-4)^{2}}=\sqrt{64+4}=\sqrt{68}$$unit
Since AB = BC = CD = DA and AC = BD. So all the four sides of the quadrilateral ABCD are equal and its diagonals AC and BD are also equal. Therefore, ABCD is square.
Example-7. The figure shows the arrangement of desks in a class room. Madhuri, Meena, Pallavi are seated at A(3, 1), B(6, 4) and C(8, 6) respectively.
Do you think they are seated in a line ? Give reasons for your answer
Solution : Using the distance formula, we have.
$$AB=\sqrt{(6-3)^{2}+(4-1)^{2}}=\sqrt{9+9}=\sqrt{18}=3\sqrt{2}$$
Units
BC=$$\sqrt{(8-6)^{2}+(6-4)^{2}}=\sqrt{4+4}=\sqrt{8}=2\sqrt{2}$$units
AC=$$\sqrt{(8-3)^{2}+(6-1)^{2}}=\sqrt{25+25}=\sqrt{50}=5\sqrt{2}$$units
Since, $$AB + BC =3\sqrt{2}=2\sqrt{2}=5\sqrt{2}=AC$$ , we can say that the points A, B and C are collinear. Therefore, they are seated in a line.
Example-8. Find the relation between x and y such that the point (x , y) is equidistant from the points (7, 1) and (3, 5).
Solution : Given P(x, y) be equidistant from the points A(7, 1) and B(3, 5).
AP=BP. So.$$AP^{2}=BP^{2}$$
i.e.,$$(x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2}$$
i.e.,$$(x^{2}-14x+49)+(y^{2}-2y+1)=(x^{2}-6x+9)+(y^{2}-10y+25)$$
$$(x^{2}+y^{2}-14x-2y+50)-(x^{2}+y^{2}-6x-10y+34)=0$$
-8x+8y=-16
i.e., x-y=2
Example-9. Find a point on the Y-axis which is equidistant from both the points A(6, 5) and B(– 4, 3).
Solution : We know that a point on the Y-axis is of the form (0, y). So, let the point P(0, y) be equidistant from A and B. Then.
$$PA=\sqrt{(6-0)^{2}+(5-y)^{2}}$$
$$PB=\sqrt{(-4-0)^{2}+(3-y)^{2}}$$
$$PA^{2}=PB^{2}$$
So, $$(6-0)^{2}+(5-y)^{2}=(-4-0)^{2}+(3-y)^{2}$$
i.e., $$36+25+y^{2}-10y=16+9+y^{2}-6y$$
i.e., 4y=36
i.e.,y=9
So, the required point is (0, 9).
Let us check our solution :$$AP=\sqrt{(6-0)^{2}+(5-9)^{2}}=\sqrt{36+16}=\sqrt{52}$$
$$BP=\sqrt{(-4-0)^{2}+(3-9)^{2}}=\sqrt{16+36}=\sqrt{52}$$
So (0, 9) is equidistant from (6, 5) and (4, 3).
1.Find the distance between the following pair of points.
(i)(2, 3) and (4, 1)
A.Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
=$$\sqrt{(4 - 2)^{2} + (1 - 3)^{2}}$$
=$$\sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$ units.
(ii)(-5, 7) and (-1, 3)
A.Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
= $$\sqrt{(-1 + 5)^{2} + (3 - 7)^{2}}$$
= $$\sqrt{4^{2} + (-4)^{2}}$$
= $$\sqrt{16 + 16} = \sqrt{32}$$
= $$4\sqrt{2}$$ units.
(iii)(-2, -3) and (3, 2)
A.Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
= $$\sqrt{(3 + 2)^{2} + (2 + 3)^{2}}$$
= $$\sqrt{5^{2} + 5^{2}} = \sqrt{25 + 25}$$
= $$\sqrt{50} = 5\sqrt{2}$$ units.
(iv)(a, b) and (-a, -b)
A.Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
= $$\sqrt{(-a - a)^{2} + (-b - b)^{2}}$$
= $$\sqrt{4a^{2} + 4b^{2}}$$
= $$\sqrt{4(a^{2} + b^{2})} = 2\sqrt{a^{2} + b^{2}}$$
2.Find the distance between the points (0, 0) and (36, 15).
A.Given : Origin O(0, 0) and a point P (36, 15).
Distance between any point and origin = $$\sqrt{x^{2} + y^{2}}$$
$$\therefore$$ Distance = $$\sqrt{36^{2} + 15^{2}}$$
= $$\sqrt{1296 + 225}$$
= $$\sqrt{1521}$$ = 39 units.
$$\therefore$$ 1521 = $$3^{2} X 13^{2}$$
$$\sqrt{1521}$$ = 3 X 13 = 39
3.Verify whether the points (1, 5), (2, 3) and (-2, -1) are collinear or not.
A.Given : A(1, 5), B(2, 3) and C(-2, -1)
Then distance $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(2 - 1)^{2} + (3 - 5)^{2}}$$
= $$\sqrt{1 + 4} = \sqrt{5}$$
BC = $$\sqrt{(-2 - 2)^{2} + (-1 - 3)^{2}}$$
= $$\sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$$
AC = $$\sqrt{(-2 - 1)^{2} + (-1 - 5)^{2}}$$
= $$\sqrt{9 + 36} = \sqrt{45}$$
Here the sum of no two segments is equal to third segment.
Hence the points are not collinear.
!! Slope of AB, $$m_{1} = \frac{3 - 5}{2 - 1} = - 2$$ Slope of BC, $$m_{2} = \frac{-1 - 3}{-2 - 2} = 1$$ $$m_{1} \neq m_{2}$$ Hence A, B, C are not collinear. |
4.Check whether (5, -2), (6, 4) and (7, -2) are the vertices of an isosceles triangle.
A.Let A = (5, - 2); B = (6, 4) and C = (7, -2).
Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(6 - 5)^{2} + (4 + 2)^{2}}$$
= $$\sqrt{1 + 36} = \sqrt{37}$$
BC = $$\sqrt{(7 - 6)^{2} + (-2 - 4)^{2}}$$
= $$\sqrt{1 + 36} = \sqrt{37}$$
AC = $$\sqrt{(7 - 5)^{2} + (-2 + 2)^{2}} = \sqrt{4}$$
Now we have, AB = BC.
$$\therefore \Delta$$ ABC is an isosceles triangle.
i.e., given points are the vertices of an isosceles triangle.
5.In a class room, 4 friends are seated at the points A, B, C and D as shown in Figure. Jarina and Phani walk into the class and after observing for a few minutes Jarina asks Phani “Don’t you notice that ABCD is a square?” Phani disagrees. Using distance formula, decide who is correct and why?A.Given : Four friends are seated at A, B, C and D where A (3, 4), B (6, 7), C (9, 4) and D(6, 1).
Now distance
$$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(6 - 3)^{2} + (7 - 4)^{2}}$$
= $$\sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$
BC = $$\sqrt{(9 - 6)^{2}} + (4 - 7)^{2}$$
= $$\sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$
CD = $$\sqrt{(6 - 9)^{2} + (1 - 4)^{2}}$$
= $$\sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$
DA = $$\sqrt{(6 - 3)^{2} + (1 - 4)^{2}}$$
= $$\sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$
AC =$$ \sqrt{(9 - 3)^{2} + (4 - 4)^{2}} = \sqrt{36}$$ = 6
BD =$$ \sqrt{(6 - 6)^{2} + (1 - 7)^{2}} = \sqrt{36}$$ = 6
Hence in ABCD
four sides are equal
i.e., AB = BC = CD = DA = $$3\sqrt{2}$$ units
and two diagonals are equal.
i.e., AC = BD = 6 units.
$$\therefore$$ ABCD forms a square.
i.e., Jarina is correct.
6.Show that the following points form an equilateral triangle A(a, 0), B(-a, 0), C(0, $$\sqrt{3}$$).
A.Given : A (a, 0), B((-a, 0), C (0, $$\sqrt{3}$$)
Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(-a - a)^{2} + (0 - 0)^{2}}$$
= $$\sqrt{4a^{2}}$$ = 2a
BC = $$\sqrt{(0 + a)^{2} + (a\sqrt{3} - 0)^{2}}$$
= $$\sqrt{a^{2} + 3a^{2}} = \sqrt{4a^{2}}$$ = 2a
CA = $$\sqrt{(0 - a)^{2} + (a\sqrt{3} - 0)^{2}}$$
= $$\sqrt{a^{2} + 3a^{2}} = \sqrt{4a^{2}}$$ = 2a
Now, AB = BC = CA.
$$\therefore \Delta$$ is an equilateral triangle.
7.Prove that the points (-7, -3), (5, 10), (15, 8) and (3, -5) taken in order are the corners of a parallelogram.
A.Given : A (-7, - 3), B(5, 10), C(15, 8) and D(3, -5)
Distance = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(5 + 7)^{2} + (10 + 3)^{2}}$$
= $$\sqrt{144 + 169} = \sqrt{313}$$
BC = $$\sqrt{(15 - 5)^{2} + (8 - 10)^{2}}$$
= $$\sqrt{100 + 4} = \sqrt{104}$$
CD = $$\sqrt{(3 - 15)^{2} + (-5 - 8)^{2}}$$
= $$\sqrt{144 + 169} = \sqrt{313}$$
AD = $$\sqrt{(3 + 7)^{2} + (-5 + 3)^{2}}$$
= $$\sqrt{100 + 4} = \sqrt{104}$$
$$\therefore$$ In ABCD, both pairs of opposite sides (AB, CD) and (BC, AD) are equal.
Hence the given points form a parallelogram.
8.Show that the points (-4, -7), (-1, 2), (8, 5) and (5, -4) taken in order are the vertices of a rhombus. Find its area.
(Hint : Area of rhombus = $$\frac{1}{2}$$ X product of its diagonals)
A.Given in ABCD, A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4)
Distance formula = $$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(-1 + 4)^{2} + (2 + 4)^{2}}$$
= $$\sqrt{9 + 81} = \sqrt{90}$$
=$$\sqrt{9 X 10} = 3\sqrt{10}$$
BC = $$\sqrt{(8 + 1)^{2} + (5 - 2)^{2}}$$
= $$\sqrt{81 + 9} = \sqrt{90} = 3\sqrt{10}$$
CD = $$\sqrt{(5 + 4)^{2} + (-4 - 5)^{2}}$$
= $$\sqrt{9 + 81} = \sqrt{90} = 3\sqrt{10}$$
AD = $$\sqrt{(5 + 4)^{2} + (-4 + 7)^{2}}$$
= $$\sqrt{81 + 9} = \sqrt{90} = 3\sqrt{10}$$
AC = $$\sqrt{(8 + 4)^{2} + (5 + 7)^{2}}$$
= $$\sqrt{144 + 144} = \sqrt{288} = 12\sqrt{2}$$
BD = $$\sqrt{(5 + 1)^{2} + (-4 - 2)^{2}}$$
= $$\sqrt{36 + 36} = \sqrt{72} = 6\sqrt{2}$$
$$\therefore$$ In ABCD, AB = BC = CD = AD [from sides are equal]
Hence ABCD is a rhombus.
Area of a rhombus = $$\frac{1}{2} d_{1}d_{2}$$
= $$\frac{1}{2}$$ X $$12\sqrt{2} X 6\sqrt{2}$$
= 72 sq. units.
9.Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.
(i)( 1, -2), (1, 0), (-1, 2), (-3, 0)
A.Let A (- 1, -2), B(11, 0), C(- 1, 2), D(-3, 0) be the given points.
Distance formula
=$$\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}$$
AB = $$\sqrt{(1 + 1)^{2} + (0 + 2)^{2}}$$
= $$\sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$
BC = $$\sqrt{(-1 - 1)^{2} + (2 - 0)^{2}}$$
= $$\sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$
CD = $$\sqrt{(-3 + 1)^{2} + (0 - 2)^{2}}$$
= $$\sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$
AD = $$\sqrt{(-3 + 1)^{2} + (0 + 2)^{2}}$$
= $$\sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$
AC = $$\sqrt{(- 1 + 1)^{2} + (2 + 2)^{2}}$$
= $$\sqrt{16}$$ = 4 units.
BD = $$\sqrt{(-3 - 1)^{2} + (0 - 0)^{2}}$$
= $$\sqrt{16}$$ = 4 units
In ABCD, AB = BC = CD = AD
- four sides are equal
AC = BD - diagonals are equal
Hence, the given points form a square.
(ii)(-3, 5), (3, 1), (1, -3), (-5, 1)
A.Let A(-3, 5), B(3, 1), C(1, -3) and D(-5, 1) be the given points
Distance formula
= $$\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}$$
AB =$$\sqrt{(3+3)^{2}+(1-5)^{2}}$$
=$$\sqrt{36+16}=\sqrt{52}$$
=$$\sqrt{4x13}=2\sqrt{13}$$
BC = $$\sqrt{(3-2)^{2}+(1+3)^{2}}$$
$$\sqrt{(3-1)^{2}+(1+3)^{2}}$$
=$$\sqrt{4+16}=\sqrt{20}=2\sqrt{5}$$
CD = $$\sqrt{(1+5)^{2}+(-3-1)^{2}}$$
$$\sqrt{36+16}= \sqrt{52} = 2\sqrt{13}$$
DA= $$\sqrt{(-5+3)^{2}+(1-5)^{2}}$$
$$\sqrt{4+16}= \sqrt{20} = 2\sqrt{5}$$
$$\therefore $$ opposite sides are equal.
AC = $$\sqrt{(-3-1)^{2}+(5+3)^{2}}$$
$$\sqrt{16+64}= \sqrt{80} = 4\sqrt{5}$$
BD = $$\sqrt{(3+5)^{2}+(1-1)^{2}}$$
$$\sqrt{64+0}= \sqrt{64}$$ = 8
$$\therefore $$ its diagonal are not equa
In ABCD, AB =CD, BC=AD and AC $$\neq$$ BD
Hence ABCD is a parallelogram.
The given points form a parallelogram.
(iii)(4, 5), (7, 6), (4, 3), (1, 2)
Let A (4,5), B (7,6) , C ( 4,3) and D (1,2) be the given points .
Distance formula
= $$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
AB = $$\sqrt{(7-4)^{2}+(6-5)^{2}}$$
$$\sqrt{9+1} = \sqrt{10}$$
BC = $$\sqrt{(7-4)^{2}+(3-6)^{2}}$$
$$\sqrt{9+9} = \sqrt{18}$$=$$\sqrt{9 x 2}$$ = $$3\sqrt{2}$$
CD = $$\sqrt{(1-4)^{2}+(2-3)^{2}}$$
$$\sqrt{9+1} = \sqrt{10}$$
AD= $$\sqrt{(1-4)^{2}+(2-5)^{2}}$$
$$\sqrt{9+9} = \sqrt{18}$$= $$3\sqrt{2}$$
AC = $$\sqrt{(4-4)^{2}+(3-5)^{2}}=\sqrt{4}$$=2
BD = $$\sqrt{(1-7)^{2}+(2-6)^{2}}$$
=$$\sqrt{36+16}=\sqrt{52}$$
In ABCD , AB = CD AND BC=AD (i.e both pairs of opposite sides are equal) and AC $$ \neq$$ BD
Hence ABCD is a parallelogram.
i.e., the given points form a parallelogram.
10.Find the point on the X-axis which is equidistant from (2, -5) and (-2, 9).
Sol . given points , A(2,-5, B (-2,9).
Let P (X, 0) be the point on X- axis which is equidistant from A and B.
i.e ., PA =PB
distance formula
=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
PA = $$\sqrt{(2-X)^{2}+(-5-0)^{2}}$$
=$$\sqrt{x^{2}-4x+4+25}$$
=$$\sqrt{x^{2}-4x+29}$$
PB = $$\sqrt{(-2-x)^{2}+(9-0)^{2}}$$
=$$\sqrt{x^{2}+4x+4+81}$$
=$$\sqrt{x^{2}+4x+85}$$
$$\Rightarrow \sqrt{x^{2}-4x+29}=\sqrt{x^{2}+4x+85}$$
squaring on both sides , we get
$$x^{2}-4x+29=x^{2}+4x+85$$
$$\Rightarrow -4x-4x=58-29$$
$$\Rightarrow -8x = 56$$
$$\Rightarrow x = \frac{56}{-8}=-7$$
$$\therefore$$ (x , 0)= (-7, 0) is the point which is equidistant from the given points.
11.If the distance between two points (x, 7) and (1, 15) is 10, find the value of x.
Sol. Given :A (x,7),B(1,15) and $$\overline{AB}$$ =10
Distance formula
=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
$$\therefore \sqrt{(1-x)6{2}+(15-7)^{2}}$$=10
$$\Rightarrow \sqrt{1+x^{2}-2x+64}$$=10
$$\Rightarrow \sqrt{x^{2}-2x+65}$$=10
squaring both sides, we get
$$(\sqrt{x^{2}-2x+65})^{2}=10^{2}$$
$$\Rightarrow $X^{2}-2x+65$$=100
$$\Rightarrow X^{2}-7x+5x-35=0$$
$$\Rightarrow X(x-7)+5 (x-7)=0$$
$$\Rightarrow$$(x-7)(x+5)=0
$$\Rightarrow$$ x-7=0 or x+5=0
$$\Rightarrow$$ x=7 or x=-5
X = 7 or -5
12.Find the values of y for which the distance between the points P(2, -3) and
Q(10, y) is 10 units.
Sol . given : P (2, -3), Q (10, y) and $$\overline{PQ}$$ =10
Distance formula
=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
$$\Rightarrow \sqrt{(x_2-x_1)^{2}+(y+3)^{2}}$$
$$\Rightarrow \sqrt{(10-2)^{2}+(y+3)^{2}}=10$$
$$\Rightarrow \sqrt{64+y^{2}+6y+9}$$=10
$$\Rightarrow \sqrt{y^{2}+6y+73}$$=10
Squaring on both sides we get.
$$(\sqrt{y^{2}+6y+73})^{2}$$=10^{2}$$
$$Y^{2}$$+6y+73=100
$$Y^{2}$$+6y-27=0
$$Y^{2}$$+9y-3y-27=0
Y(y+9)-3(y+9)=0
(y+9)(y-3)=0
Y+9=0 or y-3=0
Y=-9 or y=3
Y=-9 or 3
13.Find the radius of the circle whose centre is (3, 2) and passes through (-5, 6).
Sol.
Given : A circle with centre A (3,2)
Passing through B(-5,6).
Radius =Ab
[ Distance of a point from the centre]
distance formula
=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
Radius ‘r’ = $$\sqrt{(-5-3)^{2}+(6-2)^{2}}$$
=$$\sqrt{64+16}=\sqrt{80}$$
=$$\sqrt{16 x 5} = 4\sqrt{5}$$ units
14. Can you draw a triangle with vertices (1, 5), (5, 8) and (13, 14) ? Give reason
Let A (1 ,5) , B (5,8 ) and C (13, 14) be the given points
Distance formula
=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
AB = $$\sqrt{(5-1)^{2}+(8-5)^{2}}$$
=$$\sqrt{16+9} = \sqrt{25} $$=5
BC = $$\sqrt{(13-5)^{2}+(14-8)^{2}}$$
$$\sqrt{64+36} = \sqrt{100}$$=10
AC=$$ \sqrt{(13-1)^{2}+(14-5)^{2}}$$
$$\sqrt{144+81} = \sqrt{225}$$=15
Here, AC =AB+BC
$$\Delta$$ ABC cant be formed with the given vertices.
[$$\because $$ sum of the any two sides of triangles must be greater than the third side].
15.Find a relation between x and y such that the point (x, y) is equidistant from the points (-2, 8) and (-3, -5)
Sol.A (-2,8) B (-3,-5) and P (x,y).
If P is equidistant from A, B, then PA=PB
Distance formula
=$$\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}$$
=$$\sqrt{(x+2)^{2}+(y-8)^{2}}$$
=$$\sqrt{x^{2}+4x+4+y^{2}+64-16y}$$
=$$\sqrt{x^{2}+y^{2}+4x-16y+68}$$
Pb = $$\sqrt{(x+3)^{2}+(y+5)^{2}}$$
=$$\sqrt{x^{2}+6x+4+y^{2}+10y+25}$$
=$$\sqrt{x^{2}+y^{2}+6x+10y+34}$$
Now , PA =PB
$$\Rightarrow \sqrt{x^{2}+y^{2}+4x-16y+68}$$
=$$\sqrt{x^{2}+y^{2}+6x+10y+34}$$
Squaring on both sides we get,
$$X^{2}+y^{2}+4x-16y+68$$
$$X^{2}+y^{2}+6x+10y+34$$
$$\Rightarrow$$ 4x -16y -6x -10y=34-68
$$\Rightarrow$$-2x-26y = -34
$$\Rightarrow$$ x+13y=17 is the required condition.
0 Doubts's