Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Home SSC 9th Class MATHEMATICS

Exercise 4.4 part 1

Exercise 4.4

 

1.In the given triangles, find out x,  y and  z

Sol. In fig(i)

x^{\circ}=50^{\circ}+60^{\circ}

(\therefore  exterior angle is equal to sum of the opposite interior angles)

\therefore x=110^{\circ}

In fig (ii)

z^{\circ}=60^{\circ}+70^{\circ}

(\therefore  exterior angle is equal to sum of the opposite interior angles)

\therefore x=130^{\circ}

In fig(iii)

y^{\circ}=35^{\circ}+45^{\circ}=80^{\circ}

(\therefore  exterior angle is equal to sum of the opposite interior angles)

2.In the given figure AS || BT; ∠4 = ∠5\overline{SB}  bisects ∠AST. Find the measure of ∠1.

Sol. Given AS || BT

\angle 4=\angle 5 and \overline{SB} bisects \angle AST.

\therefore BY PROBLEM

\angle 2=\angle 3.........(i)

for the lines AS\parallel BT

\angle 2=\angle 5(\because alternate interior angles)

\therefore In \Delta BST

\angle 3=\angle 5=\angle 4

Hence \Delta BST is equilateral triangle and each of its angle is equal to 60^{\circ}

\therefore \angle 3=\angle 2=60^{\circ}

Now \angle 1+\angle 2+\angle 3=180^{\circ}

\therefore \angle 1+60^{\circ}+60^{\circ}=180^{\circ}

\because angle at a point on a line

\therefore \angle 1= 180^{\circ}-120^{\circ}=60^{\circ}

3.In the given figure AB || CD; BC || DE then find the values of x and y.

Sol.Given that AB || CD; BC || DE .

\therefore 3x=105^{\circ} (\because alternate interior angles for AB\parallel CD)

X= \frac{105^{\circ}}{3} = 35^{\circ}

Also BC\parallel DE

\therefore \angle D=105^{\circ}

\because alternate interior angles

Now in \Delta CDE

24^{\circ}+105^{\circ}+Y=108^{\circ}

\because angle sum property

\therefore y=180^{\circ}-129^{\circ}=51^{\circ}

4.In the adjacent figure BE ⊥ DA and CD⊥DA then prove that m∠1 ≅ m∠3.

Sol.Given that CD⊥DA and BE ⊥ DA.

\Rightarrow Two lines CD and BE are perpendicular to the same line DA.

\Rightarrow CD\parallel BE(or)

\angle D=\angle E\Rightarrow CD\parallel BE

\because corresponding angles for CD and BE and DA are transversal

Now m\angle 1=m\angle 3

\because altenate interior angles for the lines CD\parallel BE ; DB are transversal

Hence proved.

5.Find the values of x, y for which the lines AD and BC become parallel.

Sol.For the loines AD and BC to be parallel x-y- 30^{\circ}(corresponding angles) ...........(1)

2x=8y ........(2)

(\because  alternate interior angles)

solving(1)&(2)

(1)x(2)=2x-2y=60

2         =2x-8y=0

                 6y=60

y=\frac{60}{6} =10^{\circ}

substituting y=10^{\circ} in eq.(1)

x-10^{\circ}=30^{\circ}

\Rightarrow x=40^{\circ}

\therefore x=40^{\circ} and y=10^{\circ}

6. Find the values of x and y in the figure.

Sol.From the figure y+ 140^{\circ}=180^{\circ}

\because linear pair of angles

\therefore y=180^{\circ}-140^{\circ}=40^{\circ}

and X^{\circ}=30^{\circ}+40^{\circ}=70^{\circ}

7.In the given figure segments shown by arrow heads are parallel. Find the values of x and y.

Sol.From the figure

X^{\circ}=30^{\circ} (\because alternate interior angles)

y^{\circ}=45^{\circ}+X^{\circ} (\because exterior angles of a triangle =sum of opp.interior angles)

y=45^{\circ}+30^{\circ}=75^{\circ}

8. In the given figure sides QP and RQ of ∠PQR are produced to points S and T respectively. If  ∠SPR = 135° and  ∠PQT = 110°, find ∠PRQ.

Sol.Given that\angle SPR =135^{\circ} and \angle PQT =110^{\circ}

From the figure

\angle SPR+\angle RPQ=180^{\circ}

\angle PQT+\angle PQR=180^{\circ}

[\because linear pair of angles ]

\Rightarrow \angle RPQ=180^{\circ}-\angle SPR

=180^{\circ}-135^{\circ}=45^{\circ}

\Rightarrow \angle PQR=180^{\circ}-\angle PQT

=180^{\circ}-110^{\circ}=70^{\circ}

Now in \Delta PQR

\angle RPQ+\angle PQR+\angle PRQ=180^{\circ}

(\because angle sum property)

\therefore 45^{\circ}+70^{\circ}+\angle PQR=180^{\circ}

\therefore \angle PQR=180^{\circ}-115^{\circ}=65^{\circ}

9.In the given figure,  ∠X = 62°,  ∠XYZ = 54°. In ΔXYZ If YO and ZO are the bisectors of  ∠XYZ and ∠XZY respectively find  ∠OZY and  ∠YOZ.

Sol.Given that ∠X = 62°∠Y = 54°. YO and ZO are the bisectors of  ∠Y and ∠Z in  \Delta XYZ

\angle X+\angle XYZ+\angle XZY=180^{\circ}

62^{\circ}+54^{\circ}+\angle XZY=180^{\circ}

\Rightarrow \angle XYZ=180^{\circ}-116^{\circ}=64^{\circ}

Also in \Delta OYZ

\angle OYZ=\frac{1}{2}\angle XYZ=\frac{1}{2}X54^{\circ}=27^{\circ}

(\because YO is bisector of \angle XYZ)

\angle OZY=\frac{1}{2}\angle XZY=\frac{1}{2}X64^{\circ}=32^{\circ}

(\because OZ is bisector of \angle XYZ)

And \angle OYZ+\angle OZY+\angle YOZ=180^{\circ}

(\because angle sum property, \Delta OYZ

\Rightarrow 27+32^{\circ}+\angle YOZ=180^{\circ}

\Rightarrow \angle YOZ=180^{\circ}-59^{\circ}=121^{\circ}

10.In the given figure if AB || DE,  ∠BAC = 35° and ∠CDE = 53°, find  ∠DCE.

Sol.Given that AB || DE, ∠CDE = 53°;∠BAC = 35°

Now \angle E=35^{\circ}

(\because alternate interior angles)

Now in \Delta CDE

\angle C+\angle D+\angle E=180^{\circ}

(\because ANGLE SUM PROPERTY,\Delta CDE)

\therefore \angle DCE+53^{\circ}+35^{\circ}=180^{\circ}

\Rightarrow \angle DCE=180^{\circ}-88^{\circ}=92^{\circ}

11.In the given figure  if line segments PQ and RS intersect at point T, such that ∠PRT = 40°,  ∠RPT = 95° and ∠TSQ = 75°, find  ∠SQT.

Sol.Given that ∠PRT = 40°,  ∠RPT = 95° and ∠TSQ = 75°

In \Delta PRT\angle P+\angle R+\angle PTR=180^{\circ}

(\because angle sum property)

95^{\circ}+40^{\circ}+\angle PTR=180^{\circ}

\Rightarrow \angle PTR=180^{\circ}-135^{\circ}=45^{\circ}

Now \angle PTR=\angle STQ

(\because vertically opposite angles)

In \Delta STQ\angle S+\angle Q+\angle STQ=180^{\circ}

(\because angle sum property)

75^{\circ}+\angle SQT+45^{\circ}=180^{\circ}

\therefore \angle SQT=180^{\circ}-120^{\circ}=60^{\circ}

12.In the adjacent figure, ABC is a triangle in which ∠B = 50° and ∠C = 70°.  Sides AB and AC are produced. If ‘z’ is the measure of the angle between the bisectors of the exterior angles so formed, then find ‘z’

Sol.Given that \angle B = 50^{\circ} ; \angle C=70^{\circ}

Angle between bisectors of exterior angles B and C is Z.

From the figure

50^{\circ}+2x=180^{\circ}

70+2y=180^{\circ}

(\because linear pair of angles)

\therefore 2x=180^{\circ}-50

2x=130^{\circ}

x=\frac{130}{2}

=65^{\circ}

2y=180^{\circ}-70^{\circ}

2y=110^{\circ}

y=\frac{110^{\circ}}{2}

=55^{\circ}

Now in \Delta BOC

x+y+z=180^{\circ} (\because angle sum property)

65^{\circ}+55^{\circ}+z=180^{\circ}

z=180{\circ}-120^{\circ}=60^{\circ}