Exercise 4.4 part 1
1.In the given triangles, find out x, y and z
Sol. In fig(i)
$$x^{\circ}=50^{\circ}+60^{\circ}$$
($$\therefore$$ exterior angle is equal to sum of the opposite interior angles)
$$\therefore$$ x=$$110^{\circ}$$
In fig (ii)
$$z^{\circ}=60^{\circ}+70^{\circ}$$
($$\therefore$$ exterior angle is equal to sum of the opposite interior angles)
$$\therefore x=130^{\circ}$$
In fig(iii)
$$y^{\circ}=35^{\circ}+45^{\circ}$$=$$80^{\circ}$$
($$\therefore$$ exterior angle is equal to sum of the opposite interior angles)
2.In the given figure AS || BT; ∠4 = ∠5$$\overline{SB}$$ bisects ∠AST. Find the measure of ∠1.
Sol. Given AS || BT
$$\angle 4=\angle 5$$ and $$\overline{SB}$$ bisects $$\angle AST$$.
$$\therefore$$ BY PROBLEM
$$\angle 2=\angle 3$$.........(i)
for the lines $$AS\parallel BT$$
$$\angle 2=\angle 5$$($$\because$$ alternate interior angles)
$$\therefore$$ In $$\Delta BST$$
$$\angle 3=\angle 5=\angle 4$$
Hence $$\Delta BST$$ is equilateral triangle and each of its angle is equal to $$60^{\circ}$$
$$\therefore \angle 3=\angle 2=60^{\circ}$$
Now$$ \angle 1+\angle 2+\angle 3=180^{\circ}$$
$$\therefore \angle 1+60^{\circ}+60^{\circ}=180^{\circ}$$
$$\because$$ angle at a point on a line
$$\therefore \angle$$ 1= $$180^{\circ}-120^{\circ}=60^{\circ}$$
3.In the given figure$$ AB || CD; BC || DE $$ then find the values of x and y.
Sol.Given that $$ AB || CD; BC || DE $$.
$$\therefore$$ 3x=$$105^{\circ}$$ ($$\because$$ alternate interior angles for $$AB\parallel CD$$)
X= $$\frac{105^{\circ}}{3}$$ = $$35^{\circ}$$
Also $$BC\parallel DE$$
$$\therefore \angle D$$=$$105^{\circ}$$
$$\because$$ alternate interior angles
Now in $$\Delta CDE $$
$$24^{\circ}+105^{\circ}+Y$$=$$108^{\circ}$$
$$\because$$ angle sum property
$$\therefore y$$=$$180^{\circ}-129^{\circ}$$=$$51^{\circ}$$
4.In the adjacent figure $$BE ⊥ DA$$ and $$CD⊥DA$$ then prove that $$m∠1 ≅ m∠3$$.
Sol.Given that $$CD⊥DA$$ and $$BE ⊥ DA$$.
$$\Rightarrow$$ Two lines CD and BE are perpendicular to the same line DA.
$$\Rightarrow CD\parallel BE$$(or)
$$\angle D=\angle E\Rightarrow CD\parallel BE$$
$$\because$$ corresponding angles for CD and BE and DA are transversal
Now $$m\angle 1=m\angle 3$$
$$\because$$ altenate interior angles for the lines $$CD\parallel BE ; DB$$ are transversal
Hence proved.
5.Find the values of x, y for which the lines AD and BC become parallel.
Sol.For the loines AD and BC to be parallel $$x-y- 30^{\circ}$$(corresponding angles) ...........(1)
2x=8y ........(2)
($$\because$$ alternate interior angles)
solving(1)&(2)
(1)x(2)=2x-2y=60
2 =2x-8y=0
6y=60
y=$$\frac{60}{6} =10^{\circ}$$
substituting y=$$10^{\circ}$$ in eq.(1)
$$x-10^{\circ}=30^{\circ}$$
$$\Rightarrow x=40^{\circ}$$
$$\therefore x=40^{\circ}$$ and $$y=10^{\circ}$$
6. Find the values of x and y in the figure.
Sol.From the figure$$ y+ 140^{\circ}=180^{\circ}$$
$$\because$$ linear pair of angles
$$\therefore y=180^{\circ}-140^{\circ}=40^{\circ}$$
and $$X^{\circ}=30^{\circ}+40^{\circ}=70^{\circ}$$
7.In the given figure segments shown by arrow heads are parallel. Find the values of x and y.
Sol.From the figure
$$X^{\circ}=30^{\circ}$$ ($$\because$$ alternate interior angles)
$$y^{\circ}=45^{\circ}+X^{\circ}$$ ($$\because$$ exterior angles of a triangle =sum of opp.interior angles)
y=$$45^{\circ}+30^{\circ}=75^{\circ}$$
8. In the given figure sides QP and RQ of $$∠PQR$$ are produced to points S and T respectively. If $$∠SPR = 135°$$ and $$∠PQT = 110°$$, find $$∠PRQ$$.
Sol.Given that$$\angle SPR =135^{\circ} and \angle PQT =110^{\circ}$$
From the figure
$$\angle SPR+\angle RPQ=180^{\circ}$$
$$\angle PQT+\angle PQR=180^{\circ}$$
[$$\because$$ linear pair of angles ]
$$\Rightarrow \angle RPQ=180^{\circ}-\angle SPR$$
=$$180^{\circ}-135^{\circ}$$=$$45^{\circ}$$
$$\Rightarrow \angle PQR=180^{\circ}-\angle PQT$$
=$$180^{\circ}-110^{\circ}=70^{\circ}$$
Now in $$\Delta PQR$$
$$\angle RPQ+\angle PQR+\angle PRQ=180^{\circ}$$
($$\because$$ angle sum property)
$$\therefore 45^{\circ}+70^{\circ}+\angle PQR$$=$$180^{\circ}$$
$$\therefore \angle PQR$$=$$180^{\circ}-115^{\circ}$$=$$65^{\circ}$$
9.In the given figure, $$∠X = 62°, ∠XYZ = 54°$$. In $$ΔXYZ$$ If YO and ZO are the bisectors of $$∠XYZ $$and $$∠XZY$$ respectively find $$∠OZY and ∠YOZ$$.
Sol.Given that $$∠X = 62°$$, $$∠Y = 54°$$. YO and ZO are the bisectors of $$∠Y $$ and $$∠Z$$ in $$\Delta XYZ$$
$$\angle X+\angle XYZ+\angle XZY$$=$$180^{\circ}$$
$$62^{\circ}+54^{\circ}+\angle XZY$$=$$180^{\circ}$$
$$\Rightarrow \angle XYZ$$=$$180^{\circ}-116^{\circ}$$=$$64^{\circ}$$
Also in $$\Delta OYZ$$
$$\angle OYZ$$=$$\frac{1}{2}\angle XYZ$$=$$\frac{1}{2}X54^{\circ}$$=$$27^{\circ}$$
($$\because$$ YO is bisector of $$\angle XYZ$$)
$$\angle OZY$$=$$\frac{1}{2}\angle XZY$$=$$\frac{1}{2}X64^{\circ}$$=$$32^{\circ}$$
($$\because$$ OZ is bisector of $$\angle XYZ$$)
And $$\angle OYZ+\angle OZY+\angle YOZ$$=$$180^{\circ}$$
($$\because$$ angle sum property, $$\Delta OYZ$$
$$\Rightarrow 27+32^{\circ}+\angle YOZ$$=$$180^{\circ}$$
$$\Rightarrow \angle YOZ$$=$$180^{\circ}-59^{\circ}$$=$$121^{\circ}$$
10.In the given figure if $$AB || DE, ∠BAC = 35° and ∠CDE = 53°, find ∠DCE$$.
Sol.Given that $$AB || DE$$, $$∠CDE = 53°$$;$$∠BAC = 35°$$
Now $$\angle E$$=$$35^{\circ}$$
($$\because$$ alternate interior angles)
Now in $$\Delta CDE$$
$$\angle C+\angle D+\angle E$$=$$180^{\circ}$$
($$\because$$ ANGLE SUM PROPERTY,$$\Delta CDE$$)
$$\therefore \angle DCE+53^{\circ}+35^{\circ}$$=$$180^{\circ}$$
$$\Rightarrow \angle DCE$$=$$180^{\circ}-88^{\circ}$$=$$92^{\circ}$$
11.In the given figure if line segments PQ and RS intersect at point T, such that $$∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°, find ∠SQT$$.
Sol.Given that$$ ∠PRT = 40°, ∠RPT = 95° and ∠TSQ = 75°$$
In $$\Delta PRT\angle P+\angle R+\angle PTR$$=$$180^{\circ}$$
($$\because$$ angle sum property)
$$95^{\circ}+40^{\circ}+\angle PTR$$=$$180^{\circ}$$
$$\Rightarrow \angle PTR$$=$$180^{\circ}-135^{\circ}$$=$$45^{\circ}$$
Now $$\angle PTR$$=$$\angle STQ$$
($$\because$$ vertically opposite angles)
In $$ \Delta STQ\angle S+\angle Q+\angle STQ$$=$$180^{\circ}$$
($$\because$$ angle sum property)
$$75^{\circ}+\angle SQT+45^{\circ}$$=$$180^{\circ}$$
$$\therefore \angle SQT$$=$$180^{\circ}-120^{\circ}$$=$$60^{\circ}$$
12.In the adjacent figure, ABC is a triangle in which $$∠B = 50° and ∠C = 70°$$. Sides AB and AC are produced. If ‘z’ is the measure of the angle between the bisectors of the exterior angles so formed, then find ‘z’
Sol.Given that $$\angle B$$ = $$50^{\circ}$$ ; $$\angle C=70^{\circ}$$
Angle between bisectors of exterior angles B and C is Z.
From the figure
$$50^{\circ}+2x$$=$$180^{\circ}$$
70+2y=$$180^{\circ}$$
($$\because$$ linear pair of angles)
$$\therefore$$ 2x=$$180^{\circ}-50$$
2x=$$130^{\circ}$$
x=$$\frac{130}{2}$$
=$$65^{\circ}$$
2y=$$180^{\circ}-70^{\circ}$$
2y=$$110^{\circ}$$
y=$$\frac{110^{\circ}}{2}$$
=$$55^{\circ}$$
Now in $$\Delta BOC$$
x+y+z=$$180^{\circ}$$ ($$\because$$ angle sum property)
$$65^{\circ}+55^{\circ}+z$$=$$180^{\circ}$$
z=$$180{\circ}-120^{\circ}$$=$$60^{\circ}$$
0 Doubts's