Exercise 6.1
i) 8x + 5y − 3 = 0
sol.8x+5y-3=0 $$\Rightarrow$$ 8x+5y+(-3)=0 Here a=8,b=5 and c=-3
ii)28x-35y=-7
sol.28x-35y=-7 $$\Rightarrow$$ 28x+(-35)y+7=0 Here a=28,b=-35 and c=7
iii)93x=12-15y
sol.93x=12-15y $$\Rightarrow$$ 93x+15y-12=0 $$\Rightarrow$$ 93x+15y+(-12)=0 Here a=93, b=15 and c=-12
iv)2x=-5y
sol.2x=-5y $$\Rightarrow$$ 2x+5y=0 Here a=2,b=5 andc=0
v)$$\frac{x}{3}+\frac{y}{4}$$ =7
sol.$$\frac{x}{3}+\frac{y}{4}$$ =7 $$\Rightarrow \frac{x}{3}+\frac{y}{4}-7$$ =0 $$\Rightarrow \frac{4x+3y-84}{12}$$ =0 $$\Rightarrow$$ 4x+3y-84=0
Here a=4,b=3 and c=-84
vi)y= $$-\frac{3}{2}x$$
sol.y= $$-\frac{3}{2}$$ x $$\Rightarrow$$ 2y=-3x $$\Rightarrow$$ 3x+2y=0 Here a=3,b=2 and c=0
vii)3x+5y=12
sol.3x+5y=12 $$\Rightarrow$$ 3x+5y+(-12)=0 Here a=3,b=5 and c=-12
2.Write each of the following in the form of ax+by+c=0 and find the values of a,b and c.
i)2x=5
sol.2x-5=0
a=2
b=0
c-=-5
ii)y-2=0
sol.y-2=0
a=0
b=1
c=-2
iii) $$\frac{y}{7}$$ =3
sol.$$\frac{y}{7}$$=3
y=21
y-21=0
a=0
b=1
c=-21
iv)x=$$\frac{-14}{13}$$
sol.x=$$\frac{-14}{13}$$
$$\Rightarrow$$ 13x=-14
$$\Rightarrow$$ 13x+14=0
a=13
b=0
c=14
3.Express the following statements as a linear equation in two variables.
i)The sum of two numbers is 34.
Sol.x+y=34; x,y are any two numbers $$ \Rightarrow $$ x+y-34=0
ii)The cost of a ball pen is Rs/-5 less than half the cost of a fountain pen.
Sol.Let the cost of a fountain pen =x
Let the cost of ball pen =y
Then y=x-5 or x-y-5=0
iii)Bhargavi got 10more marks than double of the marks of sindhu.
Sol.Let sindhu’s marks =x
Bhargavi’s marks =y
Then by problem y=2x+10 or 2x-y+10=10
iv)The cost of a pencil is ` 2 and a ball point pen is 15. Sheela pays Rs/-100 for the pencils and pens she purchased.
Sol.Given that cost of a pencil=Rs/-2
Cost of a ball point pen =Rs/-15
Let the number of pencils purchased =x
Let the number of pens purchased =y
Then the total cost of x-pencils =2x
Then the total cost of y-pens =15y
By problem 2x+15y=100
v)Yamini and Fatima of class IX together contributed 200/- towards the Prime Minister’s Relief Fund.
Sol.Let yamini’s contribution to PMRF be =Rs/-x
Fatima’s contribution to PMRF be =Rs/-y
Then by problem x+y=200
vi)The sum of a two digit number and the number obtained by reversing the order of its digits is 121. If the digits in units and ten’s place are x and y respectively.
Sol.Let the number be 10y+x
Number obtained by reversing its digits 10x+y
$$\therefore$$ sum of the numbers =(10y+x)+(10x+y)=11x+11y
by problem 11x+11y=121
$$\Rightarrow$$ x+y= $$\frac{121}{11}\Rightarrow$$ x+y=11
0 Doubts's