Processing math: 100%
Home SSC 9th Class MATHEMATICS

Exercise 9.2

Exercise 9.2

1.Weights of parcels in a transport office are given below.

Weight  (kg)

50

65

75

90

110

120

No.of parcels

25

34

38

40

47

16

Find the mean weight of the parcels.

Sol.

Weight in kg x_{i}

No.of parcels f_{i}

f_{i} x_{i}

50

65

75

90

110

120

25

34

38

40

47

16

1250

2210

2850

3600

5170

1920

                                                                          \sum f=200

                \sum f_{i}x_{i}=17000

\bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}

= \frac{17000}{200}=\frac{170}{2}

\bar{x}=85

mean = 85

2.Number of families in a village in correspondence with the number of children are given below.

No.of children

0

1

2

3

4

5

No.of families

11

25

32

10

5

1

Find the mean number of children per family.

A.

No.of children x_{i}

No.of families f_{i}$$

f_{i} x_{i}

0

1

2

3

4

5

11

25

32

10

5

1

0

25

64

30

20

5

                                                                        \sum f_{i}=84

                 \sum f_{i}x_{i}=144

\bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}=\frac{144}{84}

Mean=1.714285

3.If the mean of the following frequency distribution is 7.2 find value of ‘K’.

x

2

4

6

8

10

12

f

4

7

10

16

k

3

Sol.

x

2

4

6

8

10

12

 

f

4

7

10

16

k

3

40+k

$$\sum f_{i}x_{i}

8

28

60

128

10k

36

260+10k

\sum f_{i}=40+k

;   \sum f_{i}x_{i}
=260+10k

Given that \bar{x}=7.2

But \bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}

7.2= \frac{260+10k}{40+k}

288.0+7.2k=260+10k

10k-7.2k=288-260

2.8k=28

k= \frac{28}{2.8}

=10

4.Number of villages with respect to their population as per India census 2011 are given below.

Population (in thousands)

12

5

30

20

15

8

villages

20

15

32

35

36

7

 

Find the average population in each village.

Sol.

Population(in thousands) x_{i}

Villages f_{i}

f_{i}x_{i}

12

5

30

20

15

8

20

15

32

35

36

7

240

75

960

700

540

56

                                                                   \sum f_{i}=145

   

\sum f_{i}x_{i}=2571

thousands

\bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}

Mean = \frac{2571}{145}

=17.731 thousands 

5.AFLATOUN social and financial educational program initiated savings program among the high school children in Hyderabad district.  Mandal wise savings in a month are given in the following table.

Mandal

No.of schools

Total amount saved (in rupees)

Amberpet

6

2154

Thirumalgiri

6

2478

Saidabad

5

975

Khairathabad

4

912

Secunderabad

3

600

Bahadurpura

9

7533

Find arithmetic mean of school wise savings in each mandal. Also find the arithmetic mean of saving of all schools.

Sol.

Mandal

No.of schools

f_{i}

Total amount saved (in rupees)

f_{i}x_{i}

School average in rupees =\bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}

Amberpet

6

2154

\frac{2154}{6}=359

Thirumalgiri

6

2478

\frac{2478}{6}=413

Saidabad

5

975

  \frac{975}{5}=195

Khairathabad

4

912

\frac{912}{4}=228

Secunderabad

3

600

\frac{600}{3}=200

Bahadurpura

9

7533

  \frac{7533}{6}=837

                             \sum f_{i}

=33     \sum f_{i}x_{i}
=14652

Mean=\frac{\sum f_{i}x_{i}}{\sum f_{i}}

\bar{x}=\frac{14652}{33}

=Rs/-444(mean savings per school)

6.The heights of boys and girls of IX class of a school are given below.

Height (cm)

135

140

147

152

155

160

Boys

2

5

12

10

7

1

Girls

1

2

10

5

6

5

Compare the heights of the boys and girls [Hint : Find median heights of boys and girls]

Sol.

Height(cm)

Boys (f)

c.f.

Girls (f)

c.f.

135

2

2

1

1

140

5

7

2

3

147

12

19 \leftarrow

10

13

152

10

29

5

18 \leftarrow

155

7

36

6

24

160

1

37

5

29

 

 

N=37

N=29

 

 

Boys median class = \frac{37+1}{2}=\frac{38}{2}

=19th observation

\therefore

median height of boys =147cm

Girls median class = \frac{29+1}{2}=\frac{30}{2}

= 15th observation

\therefore

median height of girls =152cm

7.Centuries scored and number of cricketers in the world are given below.

No.of centuries

5

10

15

20

25

No.of cricketers

56

23

39

13

8

Find the mean, median and mode of the given data.

Sol.

No.of centuries \sum x_{i}=14652

No.of cricketers

f_{i}

c.f.

f_{i} x_{i}

5

10

15

20

25

56 \leftarrow

mode

23 \leftarrow

median

39

13

8

56

79

118

131

139

280

230

585

260

200

                                                   N=\sum f_{i}=139

                                \sum f_{i}x_{i}=1555

Mean \bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}=\frac{1555}{139}

=11.187

Median=\left ( \frac{N}{2}+1 \right )^{th} term =\frac{139+1}{2}=\frac{140}{2}=70^{th}

term=10

mode =5

8.On the occasion of New year’s day a sweet stall prepared sweet packets. Number of sweet packets and cost of each packet are given as follows.

Cost of packet (inRs/-)

Rs/25

Rs/50

Rs/75

Rs/100

Rs/125

Rs/150

No.of packets

20

36

32

29

22

11

Find the mean, median and mode of the data.

Sol.

Cost of packet (inRs/)x_{i}

No.of packets f_{i}

c.f.

f_{i} x_{i}

25

50

75

100

125

150

20mode

36 \leftarrow

32

29

22

11

20

56

88\leftarrow

median

117

139

150

500

1800

2400

2900

2750

1650

                                           N=\sum f_{i}=150

                                       \sum f_{i}x_{i}=12000

Mean =\bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}=\frac{12000}{150}

=80

Median=average of  \left ( \frac{N}{2}+1 and \frac{N}{2} \right )

terms = average of 75 and 76 observations =75

Mode=50

9.The mean (average) weight of three students is 40 kg. One of the students Ranga weighs 46 kg. The other two students, Rahim and Reshma have the same weight. Find Rahim’s weight.

Sol.Weight of Ranga=46kg

Weight of Reshma=weight of Rahim=xkg say

Average = \frac{sum of the weights}{number}

=40kg

\therefore 40

= \frac{46+x+x}{3}

3X40=46+2x

2x=120-46=74

\therefore x=\frac{74}{2}

=37

\therefore

Rahim's weight =37 kg.

10.The donations given to an orphanage home by the students of different classes of a secondary school are given below.

class

Donation by each student in(Rs)

No.of students donated

VI

5

15

VII

7

15

VIII

10

20

IX

15

16

X

20

14

Find the mean, median and mode of the data.

Sol.

Donation (inRs/)x_{i}

No.of students  f_{i}

c.f.

f_{i} x_{i}

5

7

10

15

20

15

15

20 \leftarrow

16

14

15

30

50 \leftarrow

median

66

80

75

105

200

240

280

                                    \sum f^{i}=N=80                                                         \sum f^{i}x_{i}=900

mean \bar{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}=\frac{900}{80}=11.25

median=Average of \left ( \frac{N}{2} \right )and \left ( \frac{N}{2}+1 \right )terms

=average of \frac{80}{2},\left ( \frac{80}{2}+1 \right )

=average of 40 and 41 terms =Rs/10

Mode=Rs/10

11.There are four unknown numbers. The mean of the first two numbers is 4 and the mean of the first three is 9. The mean of all four number is 15, if one of the four number is 2 find the other numbers.

Sol.We know that mean = \frac{sum}{number}

Given that

Mean of 4 numbers = 15

\Rightarrow

Sum of the 4 numbers =4 X 15 = 60

Mean of the first 3 numbers =9

\Rightarrow

sum of the first 3 numbers =3 X 9 = 27

Mean of the first 2 number = 4

\Rightarrow

sum of the first 2 numbers =2 X 4 = 8

Fourth number = sum of 4 numbers - sum of 3 numbers = 60-27= 33

Third number =sum of 3 numbers - sum of 2 numbers = 27-8=19

Second number = sum of 2 numbers - given number =8-2=6

\therefore

The other three numbers are 6,19,33